
7.9 Check Your Understanding Find the expectation value of the position for a particle in the ground state
of a harmonic oscillator using symmetry.

Quantum probability density distributions change in character for excited states, becoming more like the classical
distribution when the quantum number gets higher. We observe this change already for the first excited state of a quantum

oscillator because the distribution |ψ1(x)|  2 peaks up around the turning points and vanishes at the equilibrium position,

as seen in Figure 7.13. In accordance with Bohr’s correspondence principle, in the limit of high quantum numbers, the
quantum description of a harmonic oscillator converges to the classical description, which is illustrated in Figure 7.15.
The classical probability density distribution corresponding to the quantum energy of the n = 12 state is a reasonably good

approximation of the quantum probability distribution for a quantum oscillator in this excited state. This agreement becomes
increasingly better for highly excited states.

Figure 7.15 The probability density distribution for finding the quantum harmonic oscillator in its n = 12
quantum state. The dashed curve shows the probability density distribution of a classical oscillator with the
same energy.

7.6 | The Quantum Tunneling of Particles through

Potential Barriers

Learning Objectives

By the end of this section, you will be able to:

• Describe how a quantum particle may tunnel across a potential barrier

• Identify important physical parameters that affect the tunneling probability

• Identify the physical phenomena where quantum tunneling is observed

• Explain how quantum tunneling is utilized in modern technologies

Quantum tunneling is a phenomenon in which particles penetrate a potential energy barrier with a height greater than the
total energy of the particles. The phenomenon is interesting and important because it violates the principles of classical
mechanics. Quantum tunneling is important in models of the Sun and has a wide range of applications, such as the scanning
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tunneling microscope and the tunnel diode.

Tunneling and Potential Energy
To illustrate quantum tunneling, consider a ball rolling along a surface with a kinetic energy of 100 J. As the ball rolls,
it encounters a hill. The potential energy of the ball placed atop the hill is 10 J. Therefore, the ball (with 100 J of kinetic
energy) easily rolls over the hill and continues on. In classical mechanics, the probability that the ball passes over the hill
is exactly 1—it makes it over every time. If, however, the height of the hill is increased—a ball placed atop the hill has a
potential energy of 200 J—the ball proceeds only part of the way up the hill, stops, and returns in the direction it came. The
total energy of the ball is converted entirely into potential energy before it can reach the top of the hill. We do not expect,
even after repeated attempts, for the 100-J ball to ever be found beyond the hill. Therefore, the probability that the ball
passes over the hill is exactly 0, and probability it is turned back or “reflected” by the hill is exactly 1. The ball never makes
it over the hill. The existence of the ball beyond the hill is an impossibility or “energetically forbidden.”

However, according to quantum mechanics, the ball has a wave function and this function is defined over all space. The
wave function may be highly localized, but there is always a chance that as the ball encounters the hill, the ball will suddenly
be found beyond it. Indeed, this probability is appreciable if the “wave packet” of the ball is wider than the barrier.

View this interactive simulation (https://openstaxcollege.org/l/21intquatanvid) for a simulation of
tunneling.

In the language of quantum mechanics, the hill is characterized by a potential barrier. A finite-height square barrier is
described by the following potential-energy function:

(7.59)

U(x) =
⎧

⎩
⎨

0, when x < 0
U0, when 0 ≤ x ≤ L

0, when x > L.

The potential barrier is illustrated in Figure 7.16. When the height U0 of the barrier is infinite, the wave packet

representing an incident quantum particle is unable to penetrate it, and the quantum particle bounces back from the barrier
boundary, just like a classical particle. When the width L of the barrier is infinite and its height is finite, a part of the wave
packet representing an incident quantum particle can filter through the barrier boundary and eventually perish after traveling
some distance inside the barrier.
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Figure 7.16 A potential energy barrier of height U0 creates three

physical regions with three different wave behaviors. In region I
where x < 0 , an incident wave packet (incident particle) moves in

a potential-free zone and coexists with a reflected wave packet
(reflected particle). In region II, a part of the incident wave that has
not been reflected at x = 0 moves as a transmitted wave in a

constant potential U(x) = + U0 and tunnels through to region III

at x = L . In region III for x > L , a wave packet (transmitted

particle) that has tunneled through the potential barrier moves as a
free particle in potential-free zone. The energy E of the incident
particle is indicated by the horizontal line.

When both the width L and the height U0 are finite, a part of the quantum wave packet incident on one side of the barrier

can penetrate the barrier boundary and continue its motion inside the barrier, where it is gradually attenuated on its way to
the other side. A part of the incident quantum wave packet eventually emerges on the other side of the barrier in the form of
the transmitted wave packet that tunneled through the barrier. How much of the incident wave can tunnel through a barrier
depends on the barrier width L and its height U0 , and on the energy E of the quantum particle incident on the barrier. This

is the physics of tunneling.

Barrier penetration by quantum wave functions was first analyzed theoretically by Friedrich Hund in 1927, shortly after
Schrӧdinger published the equation that bears his name. A year later, George Gamow used the formalism of quantum
mechanics to explain the radioactive α -decay of atomic nuclei as a quantum-tunneling phenomenon. The invention of

the tunnel diode in 1957 made it clear that quantum tunneling is important to the semiconductor industry. In modern
nanotechnologies, individual atoms are manipulated using a knowledge of quantum tunneling.

Tunneling and the Wave Function
Suppose a uniform and time-independent beam of electrons or other quantum particles with energy E traveling along the
x-axis (in the positive direction to the right) encounters a potential barrier described by Equation 7.59. The question is:
What is the probability that an individual particle in the beam will tunnel through the potential barrier? The answer can be
found by solving the boundary-value problem for the time-independent Schrӧdinger equation for a particle in the beam.
The general form of this equation is given by Equation 7.60, which we reproduce here:

(7.60)
− ℏ2

2m
d2 ψ(x)

dx2 + U(x)ψ(x) = Eψ(x), where − ∞ < x < + ∞.

In Equation 7.60, the potential function U(x) is defined by Equation 7.59. We assume that the given energy E of the
incoming particle is smaller than the height U0 of the potential barrier, E < U0 , because this is the interesting physical

case. Knowing the energy E of the incoming particle, our task is to solve Equation 7.60 for a function ψ(x) that is
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continuous and has continuous first derivatives for all x. In other words, we are looking for a “smooth-looking” solution

(because this is how wave functions look) that can be given a probabilistic interpretation so that |ψ(x)|2 = ψ* (x)ψ(x) is

the probability density.

We divide the real axis into three regions with the boundaries defined by the potential function in Equation 7.59
(illustrated in Figure 7.16) and transcribe Equation 7.60 for each region. Denoting by ψI(x) the solution in region I

for x < 0 , by ψII(x) the solution in region II for 0 ≤ x ≤ L , and by ψIII(x) the solution in region III for x > L , the

stationary Schrӧdinger equation has the following forms in these three regions:

(7.61)
− ℏ2

2m
d2 ψI(x)

dx2 = EψI(x), in region I: − ∞ < x < 0,

(7.62)
− ℏ2

2m
d2 ψII(x)

dx2 + U0 ψII(x) = EψII(x), in region II: 0 ≤ x ≤ L,

(7.63)
− ℏ2

2m
d2 ψIII(x)

dx2 = EψIII(x), in region III: L < x < + ∞.

The continuity condition at region boundaries requires that:

(7.64)ψI(0) = ψII(0), at the boundary between regions I and II and

and

(7.65)ψII(L) = ψIII(L), at the boundary between regions II and III.

The “smoothness” condition requires the first derivative of the solution be continuous at region boundaries:

(7.66)dψI(x)
dx |x = 0 = dψII(x)

dx |x = 0, at the boundary between regions I and II;

and

(7.67)dψII(x)
dx |x = L = dψIII(x)

dx |x = L, at the boundary between regions II and III.

In what follows, we find the functions ψI(x) , ψII(x) , and ψIII(x) .

We can easily verify (by substituting into the original equation and differentiating) that in regions I and III, the solutions
must be in the following general forms:

(7.68)ψI(x) = Ae+ikx + Be−ikx

(7.69)ψIII(x) = Fe+ikx + Ge−ikx

where k = 2mE/ℏ is a wave number and the complex exponent denotes oscillations,

(7.70)e±ikx = cos kx ± i sin kx.

The constants A, B, F, and G in Equation 7.68 and Equation 7.69 may be complex. These solutions are illustrated in
Figure 7.16. In region I, there are two waves—one is incident (moving to the right) and one is reflected (moving to the
left)—so none of the constants A and B in Equation 7.68 may vanish. In region III, there is only one wave (moving to the
right), which is the transmitted wave, so the constant G must be zero in Equation 7.69, G = 0 . We can write explicitly

that the incident wave is ψin(x) = Ae+ikx and that the reflected wave is ψref(x) = Be−ikx , and that the transmitted wave

is ψtra(x) = Fe+ikx . The amplitude of the incident wave is

|ψin(x)|2 = ψin* (x)ψin(x) = ⎛
⎝Ae+ikx⎞

⎠* Ae+ikx = A* e−ikx Ae+ikx = A* A = |A|2.

Similarly, the amplitude of the reflected wave is |ψref(x)|2 = |B|2 and the amplitude of the transmitted wave is

|ψtra(x)|2 = |F|2 . We know from the theory of waves that the square of the wave amplitude is directly proportional to the

wave intensity. If we want to know how much of the incident wave tunnels through the barrier, we need to compute the

Chapter 7 | Quantum Mechanics 335



square of the amplitude of the transmitted wave. The transmission probability or tunneling probability is the ratio of the

transmitted intensity (|F|2) to the incident intensity (|A|2) , written as

(7.71)
T(L, E) = |ψtra(x)|2

|ψin(x)|2
= |F|2

|A|2
= |FA |2

where L is the width of the barrier and E is the total energy of the particle. This is the probability an individual particle in
the incident beam will tunnel through the potential barrier. Intuitively, we understand that this probability must depend on
the barrier height U0 .

In region II, the terms in equation Equation 7.62 can be rearranged to

(7.72)d2 ψII(x)
dx2 = β2 ψII(x)

where β2 is positive because U0 > E and the parameter β is a real number,

(7.73)β2 = 2m
ℏ2 (U0 − E).

The general solution to Equation 7.72 is not oscillatory (unlike in the other regions) and is in the form of exponentials
that describe a gradual attenuation of ψII(x) ,

(7.74)ψII(x) = Ce−βx + De+βx.

The two types of solutions in the three regions are illustrated in Figure 7.17.

Figure 7.17 Three types of solutions to the stationary
Schrӧdinger equation for the quantum-tunneling problem:
Oscillatory behavior in regions I and III where a quantum particle
moves freely, and exponential-decay behavior in region II (the
barrier region) where the particle moves in the potential U0 .

Now we use the boundary conditions to find equations for the unknown constants. Equation 7.68 and Equation 7.74 are
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substituted into Equation 7.64 to give

(7.75)A + B = C + D.

Equation 7.74 and Equation 7.69 are substituted into Equation 7.65 to give

(7.76)Ce−βL + De+βL = Fe+ikL.

Similarly, we substitute Equation 7.68 and Equation 7.74 into Equation 7.66, differentiate, and obtain

(7.77)−ik(A − B) = β(D − C).

Similarly, the boundary condition Equation 7.67 reads explicitly

(7.78)β⎛
⎝De+βL − Ce−βL⎞

⎠ = −ikFe+ikL.

We now have four equations for five unknown constants. However, because the quantity we are after is the transmission
coefficient, defined in Equation 7.71 by the fraction F/A, the number of equations is exactly right because when we divide
each of the above equations by A, we end up having only four unknown fractions: B/A, C/A, D/A, and F/A, three of which
can be eliminated to find F/A. The actual algebra that leads to expression for F/A is pretty lengthy, but it can be done either
by hand or with a help of computer software. The end result is

(7.79)F
A = e−ikL

cosh (βL) + i(γ/2)sinh (βL).

In deriving Equation 7.79, to avoid the clutter, we use the substitutions γ ≡ β/k − k/β ,

cosh y = ey + e−y

2 , and sinh y = ey − e−y

2 .

We substitute Equation 7.79 into Equation 7.71 and obtain the exact expression for the transmission coefficient for the
barrier,

T(L, E) = ⎛
⎝

F
A

⎞
⎠* F

A = e+ikL

cosh (βL) − i(γ/2)sinh (βL) · e−ikL

cosh (βL) + i(γ/2)sinh (βL)

or

(7.80)T(L, E) = 1
cosh2(βL) + (γ/2)2 sinh2(βL)

where

⎛
⎝
γ
2

⎞
⎠
2

= 1
4
⎛
⎝

1 − E/U0
E/U0

+ E/U0
1 − E/U0

− 2⎞
⎠.

For a wide and high barrier that transmits poorly, Equation 7.80 can be approximated by

(7.81)T(L, E) = 16 E
U0

⎛
⎝1 − E

U0

⎞
⎠e−2βL.

Whether it is the exact expression Equation 7.80 or the approximate expression Equation 7.81, we see that the tunneling
effect very strongly depends on the width L of the potential barrier. In the laboratory, we can adjust both the potential height
U0 and the width L to design nano-devices with desirable transmission coefficients.
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Example 7.12

Transmission Coefficient

Two copper nanowires are insulated by a copper oxide nano-layer that provides a 10.0-eV potential barrier.
Estimate the tunneling probability between the nanowires by 7.00-eV electrons through a 5.00-nm thick oxide
layer. What if the thickness of the layer were reduced to just 1.00 nm? What if the energy of electrons were
increased to 9.00 eV?

Strategy

Treating the insulating oxide layer as a finite-height potential barrier, we use Equation 7.81. We identify
U0 = 10.0 eV , E1 = 7.00 eV , E2 = 9.00 eV , L1 = 5.00 nm , and L2 = 1.00 nm . We use Equation 7.73

to compute the exponent. Also, we need the rest mass of the electron m = 511 keV/c2 and Planck’s constant

ℏ = 0.1973keV · nm/c . It is typical for this type of estimate to deal with very small quantities that are often not

suitable for handheld calculators. To make correct estimates of orders, we make the conversion ey = 10y/ln 10
.

Solution

Constants:

2m
ℏ2 = 2(511 keV/c2)

(0.1973keV · nm/c)2 = 26, 254 1
keV · (nm)2,

β = 2m
ℏ2 (U0 − E) = 26, 254(10.0 eV − E)

keV · (nm)2 = 26.254(10.0 eV − E)/eV 1
nm.

For a lower-energy electron with E1 = 7.00 eV :

β1 = 26.254(10.00 eV − E1)/eV 1
nm = 26.254(10.00 − 7.00) 1

nm = 8.875
nm ,

T(L, E1) = 16E1
U0

⎛
⎝1 − E1

U0

⎞
⎠e

−2β1 L
= 16 7

10
⎛
⎝1 − 7

10
⎞
⎠e

−17.75 L/nm = 3.36e−17.75 L/nm.

For a higher-energy electron with E2 = 9.00 eV :

β2 = 26.254(10.00 eV − E2)/eV 1
nm = 26.254(10.00 − 9.00) 1

nm = 5.124
nm ,

T(L, E2) = 16E2
U0

⎛
⎝1 − E2

U0

⎞
⎠e

−2β2 L
= 16 9

10
⎛
⎝1 − 9

10
⎞
⎠e

−5.12 L/nm = 1.44e−5.12 L/nm.

For a broad barrier with L1 = 5.00 nm :

T(L1, E1) = 3.36e
−17.75 L1 /nm

= 3.36e−17.75 · 5.00 nm/nm = 3.36e−88 = 3.36(6.2 × 10−39) = 2.1% × 10−36,

T(L1, E2) = 1.44e
−5.12 L1 /nm

= 1.44e−5.12 · 5.00 nm/nm = 1.44e−25.6 = 1.44(7.62 × 10−12) = 1.1% × 10−9.

For a narrower barrier with L2 = 1.00 nm :

T(L2, E1) = 3.36e
−17.75 L2 /nm

= 3.36e−17.75 · 1.00 nm/nm = 3.36e−17.75 = 3.36(5.1 × 10−7) = 1.7% × 10−4,

T(L2, E2) = 1.44e
−5.12 L2 /nm

= 1.44e−5.12 · 1.00 nm/nm = 1.44e−5.12 = 1.44(5.98 × 10−3) = 0.86%.

Significance

We see from these estimates that the probability of tunneling is affected more by the width of the potential barrier
than by the energy of an incident particle. In today’s technologies, we can manipulate individual atoms on metal
surfaces to create potential barriers that are fractions of a nanometer, giving rise to measurable tunneling currents.
One of many applications of this technology is the scanning tunneling microscope (STM), which we discuss later
in this section.
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7.10 Check Your Understanding A proton with kinetic energy 1.00 eV is incident on a square potential
barrier with height 10.00 eV. If the proton is to have the same transmission probability as an electron of the
same energy, what must the width of the barrier be relative to the barrier width encountered by an electron?

Radioactive Decay
In 1928, Gamow identified quantum tunneling as the mechanism responsible for the radioactive decay of atomic nuclei.
He observed that some isotopes of thorium, uranium, and bismuth disintegrate by emitting α -particles (which are doubly

ionized helium atoms or, simply speaking, helium nuclei). In the process of emitting an α -particle, the original nucleus

is transformed into a new nucleus that has two fewer neutrons and two fewer protons than the original nucleus. The α
-particles emitted by one isotope have approximately the same kinetic energies. When we look at variations of these energies
among isotopes of various elements, the lowest kinetic energy is about 4 MeV and the highest is about 9 MeV, so these
energies are of the same order of magnitude. This is about where the similarities between various isotopes end.

When we inspect half-lives (a half-life is the time in which a radioactive sample loses half of its nuclei due to decay),
different isotopes differ widely. For example, the half-life of polonium-214 is 160 µs and the half-life of uranium is 4.5

billion years. Gamow explained this variation by considering a ‘spherical-box’ model of the nucleus, where α -particles can

bounce back and forth between the walls as free particles. The confinement is provided by a strong nuclear potential at a
spherical wall of the box. The thickness of this wall, however, is not infinite but finite, so in principle, a nuclear particle
has a chance to escape this nuclear confinement. On the inside wall of the confining barrier is a high nuclear potential that
keeps the α -particle in a small confinement. But when an α -particle gets out to the other side of this wall, it is subject

to electrostatic Coulomb repulsion and moves away from the nucleus. This idea is illustrated in Figure 7.18. The width L
of the potential barrier that separates an α -particle from the outside world depends on the particle’s kinetic energy E. This

width is the distance between the point marked by the nuclear radius R and the point R0 where an α -particle emerges on

the other side of the barrier, L = R0 − R . At the distance R0 , its kinetic energy must at least match the electrostatic energy

of repulsion, E = (4πε0)−1 Ze2 /R0 (where +Ze is the charge of the nucleus). In this way we can estimate the width of

the nuclear barrier,

L = e2

4πε0
Z
E − R.

We see from this estimate that the higher the energy of α -particle, the narrower the width of the barrier that it is to tunnel

through. We also know that the width of the potential barrier is the most important parameter in tunneling probability. Thus,
highly energetic α -particles have a good chance to escape the nucleus, and, for such nuclei, the nuclear disintegration

half-life is short. Notice that this process is highly nonlinear, meaning a small increase in the α -particle energy has a

disproportionately large enhancing effect on the tunneling probability and, consequently, on shortening the half-life. This
explains why the half-life of polonium that emits 8-MeV α -particles is only hundreds of milliseconds and the half-life of

uranium that emits 4-MeV α -particles is billions of years.
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Figure 7.18 The potential energy barrier for an α -particle

bound in the nucleus: To escape from the nucleus, an α -particle

with energy E must tunnel across the barrier from distance R to
distance R0 away from the center.

Field Emission
Field emission is a process of emitting electrons from conducting surfaces due to a strong external electric field that is
applied in the direction normal to the surface (Figure 7.19). As we know from our study of electric fields in earlier
chapters, an applied external electric field causes the electrons in a conductor to move to its surface and stay there as long
as the present external field is not excessively strong. In this situation, we have a constant electric potential throughout
the inside of the conductor, including its surface. In the language of potential energy, we say that an electron inside
the conductor has a constant potential energy U(x) = −U0 (here, the x means inside the conductor). In the situation

represented in Figure 7.19, where the external electric field is uniform and has magnitude Eg , if an electron happens

to be outside the conductor at a distance x away from its surface, its potential energy would have to be U(x) = −eEg x

(here, x denotes distance to the surface). Taking the origin at the surface, so that x = 0 is the location of the surface,

we can represent the potential energy of conduction electrons in a metal as the potential energy barrier shown in Figure
7.20. In the absence of the external field, the potential energy becomes a step barrier defined by U(x ≤ 0) = −U0 and by

U(x > 0) = 0 .
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Figure 7.19 A normal-direction external electric field at the
surface of a conductor: In a strong field, the electrons on a
conducting surface may get detached from it and accelerate
against the external electric field away from the surface.

Figure 7.20 The potential energy barrier at the surface of a metallic conductor in the
presence of an external uniform electric field Eg normal to the surface: It becomes a

step-function barrier when the external field is removed. The work function of the metal
is indicated by ϕ.

When an external electric field is strong, conduction electrons at the surface may get detached from it and accelerate along
electric field lines in a direction antiparallel to the external field, away from the surface. In short, conduction electrons may
escape from the surface. The field emission can be understood as the quantum tunneling of conduction electrons through
the potential barrier at the conductor’s surface. The physical principle at work here is very similar to the mechanism of α
-emission from a radioactive nucleus.
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Suppose a conduction electron has a kinetic energy E (the average kinetic energy of an electron in a metal is the work
function ϕ for the metal and can be measured, as discussed for the photoelectric effect in Photons and Matter Waves),

and an external electric field can be locally approximated by a uniform electric field of strength Eg . The width L of the

potential barrier that the electron must cross is the distance from the conductor’s surface to the point outside the surface
where its kinetic energy matches the value of its potential energy in the external field. In Figure 7.20, this distance is
measured along the dashed horizontal line U(x) = E from x = 0 to the intercept with U(x) = −eEg x , so the barrier

width is

L = e−1 E
Eg

= e−1 ϕ
Eg

.

We see that L is inversely proportional to the strength Eg of an external field. When we increase the strength of the external

field, the potential barrier outside the conductor becomes steeper and its width decreases for an electron with a given kinetic
energy. In turn, the probability that an electron will tunnel across the barrier (conductor surface) becomes exponentially
larger. The electrons that emerge on the other side of this barrier form a current (tunneling-electron current) that can
be detected above the surface. The tunneling-electron current is proportional to the tunneling probability. The tunneling
probability depends nonlinearly on the barrier width L, and L can be changed by adjusting Eg . Therefore, the tunneling-

electron current can be tuned by adjusting the strength of an external electric field at the surface. When the strength of
an external electric field is constant, the tunneling-electron current has different values at different elevations L above the
surface.

The quantum tunneling phenomenon at metallic surfaces, which we have just described, is the physical principle behind the
operation of the scanning tunneling microscope (STM), invented in 1981 by Gerd Binnig and Heinrich Rohrer. The STM
device consists of a scanning tip (a needle, usually made of tungsten, platinum-iridium, or gold); a piezoelectric device that
controls the tip’s elevation in a typical range of 0.4 to 0.7 nm above the surface to be scanned; some device that controls the
motion of the tip along the surface; and a computer to display images. While the sample is kept at a suitable voltage bias,
the scanning tip moves along the surface (Figure 7.21), and the tunneling-electron current between the tip and the surface
is registered at each position. The amount of the current depends on the probability of electron tunneling from the surface to
the tip, which, in turn, depends on the elevation of the tip above the surface. Hence, at each tip position, the distance from
the tip to the surface is measured by measuring how many electrons tunnel out from the surface to the tip. This method can
give an unprecedented resolution of about 0.001 nm, which is about 1% of the average diameter of an atom. In this way, we
can see individual atoms on the surface, as in the image of a carbon nanotube in Figure 7.22.
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Figure 7.21 In STM, a surface at a constant potential is being scanned by a narrow tip
moving along the surface. When the STM tip moves close to surface atoms, electrons can
tunnel from the surface to the tip. This tunneling-electron current is continually monitored
while the tip is in motion. The amount of current at location (x,y) gives information about
the elevation of the tip above the surface at this location. In this way, a detailed
topographical map of the surface is created and displayed on a computer monitor.

Figure 7.22 An STM image of a carbon nanotube: Atomic-
scale resolution allows us to see individual atoms on the surface.
STM images are in gray scale, and coloring is added to bring up
details to the human eye. (credit: Taner Yildirim, NIST)

Resonant Quantum Tunneling
Quantum tunneling has numerous applications in semiconductor devices such as electronic circuit components or integrated
circuits that are designed at nanoscales; hence, the term ‘ nanotechnology.’ For example, a diode (an electric-circuit
element that causes an electron current in one direction to be different from the current in the opposite direction, when
the polarity of the bias voltage is reversed) can be realized by a tunneling junction between two different types of
semiconducting materials. In such a tunnel diode, electrons tunnel through a single potential barrier at a contact between
two different semiconductors. At the junction, tunneling-electron current changes nonlinearly with the applied potential
difference across the junction and may rapidly decrease as the bias voltage is increased. This is unlike the Ohm’s law
behavior that we are familiar with in household circuits. This kind of rapid behavior (caused by quantum tunneling) is
desirable in high-speed electronic devices.

Another kind of electronic nano-device utilizes resonant tunneling of electrons through potential barriers that occur in
quantum dots. A quantum dot is a small region of a semiconductor nanocrystal that is grown, for example, in a silicon or
aluminum arsenide crystal. Figure 7.23(a) shows a quantum dot of gallium arsenide embedded in an aluminum arsenide
wafer. The quantum-dot region acts as a potential well of a finite height (shown in Figure 7.23(b)) that has two finite-
height potential barriers at dot boundaries. Similarly, as for a quantum particle in a box (that is, an infinite potential well),
lower-lying energies of a quantum particle trapped in a finite-height potential well are quantized. The difference between
the box and the well potentials is that a quantum particle in a box has an infinite number of quantized energies and is trapped
in the box indefinitely, whereas a quantum particle trapped in a potential well has a finite number of quantized energy levels
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and can tunnel through potential barriers at well boundaries to the outside of the well. Thus, a quantum dot of gallium
arsenide sitting in aluminum arsenide is a potential well where low-lying energies of an electron are quantized, indicated as
Edot in part (b) in the figure. When the energy Eelectron of an electron in the outside region of the dot does not match its

energy Edot that it would have in the dot, the electron does not tunnel through the region of the dot and there is no current

through such a circuit element, even if it were kept at an electric voltage difference (bias). However, when this voltage bias
is changed in such a way that one of the barriers is lowered, so that Edot and Eelectron become aligned, as seen in part (c)

of the figure, an electron current flows through the dot. When the voltage bias is now increased, this alignment is lost and
the current stops flowing. When the voltage bias is increased further, the electron tunneling becomes improbable until the
bias voltage reaches a value for which the outside electron energy matches the next electron energy level in the dot. The
word ‘resonance’ in the device name means that the tunneling-electron current occurs only when a selected energy level
is matched by tuning an applied voltage bias, such as in the operation mechanism of the resonant-tunneling diode just
described. Resonant-tunneling diodes are used as super-fast nano-switches.

Figure 7.23 Resonant-tunneling diode: (a) A quantum dot of gallium arsenide embedded in aluminum arsenide.
(b) Potential well consisting of two potential barriers of a quantum dot with no voltage bias. Electron energies
Eelectron in aluminum arsenide are not aligned with their energy levels Edot in the quantum dot, so electrons do

not tunnel through the dot. (c) Potential well of the dot with a voltage bias across the device. A suitably tuned
voltage difference distorts the well so that electron-energy levels in the dot are aligned with their energies in
aluminum arsenide, causing the electrons to tunnel through the dot.
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